Spanning trees without adjacent vertices of degree 2

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Bounded Spanning Trees

In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S ⊆ V(G) of cardinality n(k − 1) + c + 2, there exists a vertex set X ⊆ S of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c − 1. Then G has a spanning tree T with maximum de...

متن کامل

Degree-constrained spanning trees

S of the Ghent Graph Theory Workshop on Longest Paths and Longest Cycles Kathie Cameron Degree-constrained spanning trees 2 Jan Goedgebeur Finding minimal obstructions to graph coloring 3 Jochen Harant On longest cycles in essentially 4-connected planar graphs 3 Frantǐsek Kardoš Barnette was right: not only fullerene graphs are Hamiltonian 4 Gyula Y. Katona Complexity questions for minimally t-...

متن کامل

Spanning Trees of Small Degree

In this paper we show that pseudo-random graphs contain spanning trees of maximum degree 3. More specifically, (n, d, λ)-graphs with sufficiently large spectral gap contain such spanning trees.

متن کامل

Spanning trees with few branch vertices

A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s ≥ 1, every connected graph on n vertices with minimum degree at least ( 1 s+3 + o(1))n contains a spanning tree having at most s branch vertices. Asymptotically, this is best possible and solves a problem of Flandrin, Kaiser, Kuz̆el, Li and Ryjác̆ek, which was originally motivated by an optimization problem i...

متن کامل

Spanning Trees with Vertices Having Large Degrees

Let G be a connected simple graph, and let f be a mapping from V (G) to the set of integers. This paper is concerned with the existence of a spanning tree in which each vertex v has degree at least f(v). We show that if ∣∣ΓG(S)∣∣− f(S)+ |S| ≥ 1 for any nonempty subset S ⊆ L, then a connected graph G has a spanning tree such that dT (x) ≥ f(x) for all x ∈ V (G), where ΓG(S) is the set of neighbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2019

ISSN: 0012-365X

DOI: 10.1016/j.disc.2019.111604